

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 2H

### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.edexcel.com">www.btec.co.uk</a>. Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

# Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2024
Question Paper Log Number P73994A
Publications Code 4MA1\_2H\_2406\_MS
All the material in this publication is copyright
© Pearson Education Ltd 2024

#### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response

### Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

#### Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- eeoo each error or omission

#### No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

# With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

### Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

# • Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

# **International GCSE Maths**

Apart from questions 4, 10, 14ab, 15b, 19, 22, 23, 24 the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method

Values in quotation marks must come from a correct method previously seen unless clearly stated otherwise.

|   | dotation marks must come from a corre                                                                                       |                         |      |                                                                                                   |
|---|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|------|---------------------------------------------------------------------------------------------------|
| Q | Working                                                                                                                     | Answer                  | Mark | Notes                                                                                             |
| 1 | for $k = 18$<br>or<br>$eg(8+j) \div 2 = 10 \text{ or } (j=) 10 \times 2 - 8$<br>or $8+j=2 \times 10 \text{ or } j=12$<br>or |                         | 3    | M1 For a correct value for <i>h</i> , <i>j</i> or k or for a correct statement for one of these   |
|   | eg $k - h = 13$ or "18" $- h = 13$ or $h = 5$ for two of the above                                                          |                         |      | M1 for 2 correct values from <i>h</i> , <i>j</i> or <i>k</i> or for 2 correct statements for them |
|   | Correct answer scores full marks (unless from obvious incorrect working)                                                    | h = 5 $j = 12$ $k = 18$ |      | A1 All correct                                                                                    |
|   |                                                                                                                             |                         |      | Total 3 marks                                                                                     |

| 2 ( | a)(i) |                                                        | y = 2 drawn     | 3 | B1   |                                                                                                                                                                                                    |
|-----|-------|--------------------------------------------------------|-----------------|---|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (ii)  |                                                        | x = 6  drawn    |   | B1   | Lines (can be solid, dotted or dashed) must                                                                                                                                                        |
|     | (iii) | y A 3C=6<br>8                                          | y = x + 1 drawn |   | B1   | be at least 2 cm long and need not be labelled                                                                                                                                                     |
|     | b)    | 7<br>6<br>5<br>4<br>3<br>2<br>1<br>0 1 2 3 4 5 6 7 8 x |                 | 1 | B1ft | ft dep on at least B2 scored in (a) and a vertical line, a horizontal line and a diagonal line with a positive gradient  SCB1 for $y = x + 1$ , $y = 6$ and $x = 2$ and area shaded as shown below |
|     |       |                                                        |                 |   |      | Total 4 marks                                                                                                                                                                                      |

| 3 | For 9 hrs 36 mins = 9.6 (hrs) or $9\frac{36}{60}$ (hrs) or $9\frac{3}{5}$ (hrs) oe or 576 (mins)                                                     |      | 3 | M1 | For a correct conversion of time into hours or into minutes                      | Award M2 for $820 \times 9 + \frac{820}{60} \times 36$ $(= 7380 + 492)$ |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|----|----------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|   | eg $820 \times "9.6"$ or $820 \times \frac{576}{60}$ or $576 \times \frac{820}{60}$ or $576 \times \frac{41}{3}$ (allow 13.7 for $\frac{41}{3}$ ) oe |      |   | M1 | For use of distance = speed × time in hours (eg allow use of 9.36 for this mark) | or $\frac{34560}{60 \times 60} \times 820$ oe                           |
|   | Correct answer scores full marks (unless from obvious incorrect working)                                                                             | 7872 |   | A1 | SCB1 for 7675.2 if no o                                                          | ther marks awarded                                                      |
|   |                                                                                                                                                      |      |   |    |                                                                                  | Total 3 marks                                                           |

| 4 | $\frac{18}{7}, \frac{28}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 3 | M1    | for correct improper fractions                                                                                                                                                                                                                                                                           |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $\frac{18^{2}}{7^{1}} \times \frac{28^{4}}{9^{1}}  \text{or}  \frac{18}{7} \times \frac{28}{9} = \frac{504}{63}  \text{oe eg}  \frac{18^{2}}{7} \times \frac{28}{9^{1}} = \frac{56}{7}$ $\text{or}  \left(\frac{18}{7} \times \frac{28}{9}\right) = \frac{162}{63} \times \frac{196}{63} = \frac{31752}{3969}  \text{oe}$ $\text{eg}  \frac{18^{2}}{7^{1}} \times \frac{28^{4}}{9^{1}} = 8  \text{or}  \frac{18^{2}}{7^{1}} \times \frac{28^{4}}{9^{1}} = 2 \times 4 = 8$ | Shown |   | M1dep | for cancelling fractions fully or cancelling fractions partially and clear intention to multiply (allow arithmetic error in multiplication) or not cancelling and clear intention to multiply (allow arithmetic error in multiplication)  Dep on M2 for a correct answer of 8 from fully correct working |
|   | eg $\frac{18}{7} \times \frac{28}{9} = \frac{504}{63} = 8$ oe or<br>eg $\left(\frac{18}{7} \times \frac{28}{9}\right) = \frac{162}{63} \times \frac{196}{63} = \frac{31752}{3969} \left(=\frac{8}{1}\right) = 8$<br>working required                                                                                                                                                                                                                                      |       |   |       | Candidates may show $8 = \frac{8}{1}$ (maybe under the given 8) and then they need only show the given fraction comes to $\frac{8}{1}$                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |   |       | Total 3 marks                                                                                                                                                                                                                                                                                            |

| 5 | $\sin 34 = \frac{x}{6.5} \text{ or } \frac{x}{\sin 34} = \frac{6.5}{\sin 90} \text{ oe}$ $6.5^2 - (6.5 \times \cos 34)^2 \text{ or}$ $\cos 56 = \frac{x}{6.5} \text{ oe}$ |     | 3 | M1 | a correct trig statement for x   |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|----|----------------------------------|
|   | $(x =) 6.5 \times \sin 34 \text{ or } x = \frac{6.5 \times \sin 34}{\sin 90}$ or $(x =) \sqrt{6.5^2 - (6.5 \times \cos 34)^2}$ or $(x =) 6.5 \times \cos 56 \text{ oe}$   |     |   | M1 | a fully correct method to find x |
|   | Correct answer scores full marks (unless from obvious incorrect working)                                                                                                  | 3.6 |   | A1 | awrt 3.6                         |
|   |                                                                                                                                                                           |     |   |    | Total 3 marks                    |

| 6 | For one of $w \div 1000$ or $w \div 10^{3}$ or $w \times 10^{-3}$ or $0.001w$ oe $(w \times 60 \times 60)$ oe or $w \div \frac{1}{3600}$ oe |      | 3 | M1 or $\frac{3600}{1000} \text{ or } \frac{18}{5} \text{ or } 3.6 \text{ oe (without a link to } w)$ |
|---|---------------------------------------------------------------------------------------------------------------------------------------------|------|---|------------------------------------------------------------------------------------------------------|
|   | $\frac{w \times 60 \times 60}{1000} \text{ oe eg } w \times \frac{3600}{1000}$                                                              |      |   | M1 For a fully correct method including w                                                            |
|   | Correct answer scores full marks (unless from obvious incorrect working)                                                                    | 3.6w |   | A1 or $\frac{18}{5}w$ or $3\frac{3}{5}w$ allow $3.6 \times w$                                        |
|   |                                                                                                                                             |      |   | Total 3 marks                                                                                        |

| 7 | eg $13 \times 21 \ (=273)$ or $21 \times h \ (=21h)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 4 | M1   | A correct calculation for an area linked to the     |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|------|-----------------------------------------------------|
|   | or $0.5(15+21) \times y$ or $15(h-13)$ or $2 \times \frac{1}{2}(3(h-13))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |   |      | shape. $(h-13)$ might be written as $x$ or $y$ etc: |
|   | or $\frac{1}{2}(13+h) \times 3 = 19.5 + 1.5h$ or $15 \times h = 15h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |   |      | this is acceptable (even allow $h$ )                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |   |      | [allow without brackets for this mark only]         |
|   | eg 390 – "273" (= 117) or $13 \times 21$ and $0.5(15+21)(h-13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |   | M1   | For considering the area of all parts of the        |
|   | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |   |      | shape (parts need not be added or subtracted        |
|   | $13 \times 21$ and $0.5(15+21)y$ oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |   |      | for the whole shape)                                |
|   | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |   |      | 1 /                                                 |
|   | $21h$ and $2 \times \frac{1}{2}(3(h-13))$ oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |   |      | (where $y = \text{height of } BCDE$ )               |
|   | or $2 + \frac{1}{2} \frac{1}{n} = \frac{1}{2} \frac{1} \frac{1}{n} = \frac{1}{2} \frac{1}{n} = \frac{1}{2} \frac{1}{n} = \frac{1}{2} \frac{1}{n} $ |      |   |      | (maily magnetized)                                  |
|   | $13 \times 21$ and $15(h-13)$ and $2 \times \frac{1}{2}(3(h-13))$ oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |   |      | (h-13) might be written as x or y etc: this is      |
|   | or $13 \wedge 21$ and $13(n-13)$ and $2 \wedge 2(3(n-13))$ of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |   |      | acceptable (even allow $h$ )                        |
|   | $2 \times \frac{1}{2}(13+h) \times 3$ and $15 \times h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |   |      | acceptation (even and with)                         |
|   | $2 \wedge 72(13 + n) \wedge 3$ and $13 \wedge n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |   |      | [correct use of brackets]                           |
|   | "117" $\div$ (0.5 × (15 + 21))(= 6.5) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |   | M1   | A correct calculation to find height of             |
|   | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |   | 1,11 | trapezium or height of shape or a correct           |
|   | $\frac{1}{2}(15+21) \times y = "117"$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |   |      | equation involving height of trapezium or           |
|   | $\frac{1}{2}(13+21) \times y = 117$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |   |      | height of shape                                     |
|   | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |   |      | or                                                  |
|   | 273 + 18(h - 13) = 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |   |      | 6.5                                                 |
|   | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |   |      | (h-13) might be written as x or y etc: this is      |
|   | $15(h-13) + 2 \times \frac{1}{2}(3(h-13)) = 117$ oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |   |      | acceptable (even allow $h$ )                        |
|   | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |   |      | 1 (                                                 |
|   | $2 \times \frac{1}{2}(13+h) \times 3 + 15h = 390$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |   |      | [correct use of brackets]                           |
|   | Typical equations here simplify to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |   |      | []                                                  |
|   | 18y = 117, $18h - 234 = 117$ , $18h + 39 = 390$ , $18h = 351$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |   |      |                                                     |
|   | Correct answer scores full marks (unless from obvious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.5 |   | Aloe | eg $\frac{39}{2}$                                   |
|   | incorrect working)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |   |      | 2                                                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |   |      | Total 4 marks                                       |

| 8 | $600 \div (9 + 4 + 2) (= 40)$                          | Tulips:                                                                                   |     | 5 | M1   | A correct method to find one share             |
|---|--------------------------------------------------------|-------------------------------------------------------------------------------------------|-----|---|------|------------------------------------------------|
|   | or                                                     | $0.45 \times 9 \ (= 4.05)$                                                                |     |   |      | or 45% of 600 or $\frac{5}{8}$ of 600          |
|   | tulip: $0.45 \times 600 \ (= 270)$                     |                                                                                           |     |   |      | 8                                              |
|   | or                                                     | or                                                                                        |     |   |      | or                                             |
|   | crocus: $\frac{5}{8} \times 600 \ (=375)$              | $0.45 \times \frac{9}{15} \left( = \frac{27}{100} (= 0.27) \right)$ oe                    |     |   |      | the fraction of the share that is for tulips   |
|   | Daffodils: "40" × 2 (=                                 | Crocus:                                                                                   |     |   | M1   | A correct method to find number of             |
|   | $80)\frac{2}{15} \times 600 (= 80)$                    | $\frac{5}{8} \times 4 (=2.5)$ or                                                          |     |   |      | daffodils                                      |
|   | 13                                                     |                                                                                           |     |   |      | or                                             |
|   | (implies 1 <sup>st</sup> M1)                           | $\left[ \frac{5}{8} \times \frac{4}{15} \left( = \frac{1}{6} (= 0.16) \right) \right]$ oe |     |   |      | the fraction of the share that is for crocus   |
|   | Tulip:                                                 | Total of parts                                                                            |     |   | M1   | A correct method to find number of yellow      |
|   | $0.45 \times (9 \times \text{``40''})(=162)$           | 4.05 + 2.5 + 2 (= 8.55)                                                                   |     |   |      | tulips                                         |
|   | or                                                     | or                                                                                        |     |   |      | or                                             |
|   | $0.45 \times 600 \times \frac{9}{15} (=162)$           | $\left  \frac{27}{100} + \frac{1}{6} + \frac{2}{15} \right  = \frac{57}{100}$ oe          |     |   |      | the total of the parts that are yellow         |
|   | (implies 1 <sup>st</sup> M1)                           | (implies 1 <sup>st</sup> and 2 <sup>nd</sup> M marks)                                     |     |   |      |                                                |
|   | Crocus:                                                | i ·                                                                                       |     |   | M1   | A correct method to find number of yellow      |
|   |                                                        | $\frac{8.55}{9+4+2} \times 600 \text{ oe}$                                                |     |   | 1,11 | crocuses                                       |
|   | $\frac{5}{8}$ × (4×"40") (= 100)                       | or                                                                                        |     |   |      |                                                |
|   | or                                                     | 57                                                                                        |     |   |      | or                                             |
|   | or $\frac{5}{8} \times 600 \times \frac{4}{15} (=100)$ | $\frac{57}{100} \times 600$ oe                                                            |     |   |      | multiplying the total of the correct shares by |
|   |                                                        | (implies all previous M marks)                                                            |     |   |      | 600                                            |
|   | (implies 1 <sup>st</sup> M1)                           |                                                                                           |     |   |      |                                                |
|   | g .                                                    | l marks (unless from obvious incorrect                                                    |     |   | A1   |                                                |
|   | working)                                               |                                                                                           | 342 |   |      |                                                |
|   |                                                        |                                                                                           |     |   |      | Total 5 marks                                  |

| 9 | 4500 × 1.024 (= 4608) oe or<br>4500 × 0.024 (= 108)                                                     |      | 3 | M1 |                                                                                                                                                                                                                                           | M2 for 4500×1.024 <sup>4</sup> or 4500×1.024 <sup>5</sup>              |
|---|---------------------------------------------------------------------------------------------------------|------|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|   | "4608" × 1.024 (= 4718.592) and<br>"4718.592" × 1.024 (= 4831.838) and<br>"4831.838" × 1.024 (=4947.80) |      |   | M1 |                                                                                                                                                                                                                                           |                                                                        |
|   | Correct answer scores full marks (unless from obvious incorrect working)                                | 4948 |   | A1 | 4947 – 4948<br>if no other mark a<br>4500 × 0.024 × 4<br>0.096 × 4500 (=42)<br>4500 + 4500 × 0.0<br>4500 × 1.096 (= 42)<br>0.976 × 4500 (=42)<br>0.904 × 4500 (=42)<br>0.976 <sup>4</sup> × 4500 (=42)<br>4500×1.024 <sup>3</sup> (= 483) | 32) or<br>024 × 4 ( = 4932)<br>4932)<br>392) or<br>068) or<br>4083) or |
|   |                                                                                                         |      |   |    |                                                                                                                                                                                                                                           | Total 3 marks                                                          |

|    |                                                                                                                    |             | ı                   | 1 | T             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|--------------------------------------------------------------------------------------------------------------------|-------------|---------------------|---|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | $-6x + 4y = 1$ eg $6x + 10y = 16$ or $(6y = 15)$ or eg $6x + 4\left(\frac{8-3x}{5}\right) = 1$ or working required | (18x = -27) | x = -1.5, $y = 2.5$ | 3 | M1 M1dep A1oe | A correct method to eliminate <i>x</i> or <i>y</i> – multiplying one or both equations so that one value can be eliminated <b>and</b> the correct operation to eliminate which can be shown by 2 out of 3 terms correct for subtraction or addition (allow one arithmetic error in multiplying) <b>or</b> for a correct substitution of one variable into the other equation.  NB: the mark is for the method and not for the result of the method – although if the correct result is seen, this means the mark is awarded  A correct method to calculate the value of the other letter (dep on M1) eg substitution of found variable into an equation (equation does not need to be solved) or starting again with elimination or substitution  dep on M1  Must be a vulgar fraction or mixed number or a |
|    | working required                                                                                                   |             | -                   |   | Aloe          | dep on M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    |                                                                                                                    |             |                     |   |               | Total 3 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 11 | (i)  | $(x\pm 2)(x\pm 11)$              |             | 2 | M1 Or $(x + a)(x + b)$ where $ab = -22$ or $a + b = 9$ |
|----|------|----------------------------------|-------------|---|--------------------------------------------------------|
|    |      | Correct answer scores full marks | (x-2)(x+11) |   | A1                                                     |
|    |      | (unless from obvious incorrect   |             |   |                                                        |
|    |      | working)                         |             |   |                                                        |
|    | (ii) |                                  | 2, -11      | 1 | B1ft Must ft from their factors in (i)                 |
|    |      |                                  |             |   | Total 3 marks                                          |

| 12 | 4 × 11 800 (= 47 200) or 3 × 13 207 (= 39 621) or 86 821                 |        | 3 | M1 | for one correct product or for the sum of the products     |
|----|--------------------------------------------------------------------------|--------|---|----|------------------------------------------------------------|
|    | $\frac{"47\ 200" + "39\ 621"}{7} \left( = \frac{86821}{7} \right)$       |        |   | M1 | for a fully correct method to find the mean for the 7 days |
|    | Correct answer scores full marks (unless from obvious incorrect working) | 12 403 |   | A1 | cao                                                        |
|    |                                                                          |        |   |    | Total 3 marks                                              |

|               | T                                                      | 1           |   | 1    |                                                           |
|---------------|--------------------------------------------------------|-------------|---|------|-----------------------------------------------------------|
| <b>13</b> (a) |                                                        | 7, 24, 42,  | 1 | B1   | Correct values for cumulative frequency                   |
|               |                                                        | 56, 66, 70  |   |      |                                                           |
| (b)           | USE OVERLAY                                            | 6 points    | 2 | B2   | Fully correct graph.                                      |
|               |                                                        | plotted at  |   |      | (B1 for 5 correct points plotted and joined               |
|               | (NB: a 'bar chart' type graph scores zero marks)       | ends of     |   |      | or                                                        |
|               |                                                        | intervals   |   |      | B1 for 5 or 6 points plotted but not joined               |
|               |                                                        | and joined  |   |      | or                                                        |
|               | (ignore any part of the graph before (10, 7))          | with curve  |   |      | B1 for 5 or 6 points plotted consistently within each     |
|               |                                                        | or line     |   |      | interval (not at upper end) at their correct heights      |
|               |                                                        | segments    |   |      | and joined eg plotted at 5, 15, 25, 35, 45, 55            |
|               |                                                        |             |   |      | For any of the B1 options, you can ft a table with        |
|               |                                                        |             |   |      | just one error provided values are ascending)             |
| (c)           | NB: readings are $16 - 18$ and $36 - 38$ (but for this |             | 2 | M1ft | For a correct method to <b>allow</b> readings to be taken |
|               | M1 these do not have to be correct if correct          |             |   |      | on the distance axis from cf 52.5 (or 53.25) and          |
|               | working is shown – eg lines or marks indicating        |             |   |      | from cf 17.5 (or 17.75) oe                                |
|               | use of CF 17.5 and CF 52.5 with an indication on       |             |   |      | Ft from their cf graph                                    |
|               | the distance axis at the correct points (or they can   |             |   |      |                                                           |
|               | just show the correct readings))                       |             |   |      |                                                           |
|               | If a graph is drawn and answer is in the given         | 18 - 22     |   | A1ft | Accept a single value in range or ft from their cf        |
|               | range, then award the marks – unless from              |             |   |      | graph                                                     |
|               | obvious incorrect working                              |             |   |      |                                                           |
| (d)           |                                                        |             | 2 | M1ft | A line up from 46 to the line and reading across –        |
|               |                                                        |             |   |      | or a reading of $61 - 64$ (can be non-whole number)       |
|               |                                                        |             |   |      | from their cf graph                                       |
|               | If a graph is drawn and answer is in the given         | 6 or 7 or 8 |   | A1ft | ft their cf graph, must be a whole number                 |
|               | range, then award the marks – unless from              | or 9        |   |      |                                                           |
|               | obvious incorrect working                              |             |   |      |                                                           |
|               | Ĭ                                                      |             |   |      | Total 7 marks                                             |

| <b>14</b> (a) | $(3y)(2y+5) = 6y^2 + 15y$ $(3y)(y+7) = 3y^2 + 21y$ $(2y+5)(y+7) = 2y^2 + 14y + 5y + 35$ $(=2y^2 + 19y + 35)$             |                       | 3 | M1 | An expansion with only one error. Do not award this mark for $6y^2 + 15y + 3y^2 + 21y$ | M2 for 3 (out of a maximum of 4) of 6y <sup>3</sup> +42y <sup>2</sup> +15y <sup>2</sup> +105y |
|---------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------|---|----|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|               | $(6y^{2} + 15y)(y + 7) = 6y^{3} + 42y^{2} + 15y^{2} + 105y$ $(3y^{2} + 21y)(2y + 5) = 6y^{3} + 15y^{2} + 42y^{2} + 105y$ |                       |   | M1 | ft dep on M1<br>allow one further<br>error                                             | (M1 for 2 correct out of a maximum of 4)                                                      |
|               | $3y(2y^2 + 19y + 35) = 6y^3 + 57y^2 + 105y$                                                                              |                       |   |    |                                                                                        |                                                                                               |
|               | working required                                                                                                         | $6y^3 + 57y^2 + 105y$ |   | A1 | cao (terms may be in a simplified) dep on M1 accept $a = 6$ , $b = 57$ , $c$           |                                                                                               |
|               |                                                                                                                          |                       |   |    |                                                                                        |                                                                                               |

| 14 (b) | eg $\frac{4(2x+3)+5(6x-5)}{20}$ (=1.63) oe or $\frac{40x+60}{100}$ (+) $\frac{150x-125}{100}$ (= $\frac{163}{100}$ ) oe $4(2x+3)+5(6x-5)=1.63 \times 5 \times 4$ oe        |     | 4 | M1 | Writing fractions over a common denominator (can be 2 fractions) or for a method to remove the denominator by multiplying each term by eg 20 or 100 etc (if expanded numerator, allow one error) or $20(2x+3)+25(6x-5)=163$ (could all be written over 100) |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | eg $8x + 12 + 30x - 25 = 32.6$<br>or<br>40x + 60 + 150x - 125 = 163<br>or<br>$\frac{190x - 65}{100} = \frac{163}{100}$<br>or<br>$\frac{38x - 13}{20} = \frac{163}{100}$ oe |     |   | M1 | Removing brackets and fractions on the LHS in an equation with no more than one error from expanding on the numerator or an equation with terms on numerator of fraction simplified with no more than one error from expanding on the numerator             |
|        | 8x + 30x = 32.6 - 12 + 25<br>or<br>oe eg $38x = 45.6$ or $190x = 228$                                                                                                      |     |   | M1 | Terms in x on one side and number terms the other in a correct equation.                                                                                                                                                                                    |
|        | working required                                                                                                                                                           | 1.2 |   | A1 | oe dep on M1                                                                                                                                                                                                                                                |
|        |                                                                                                                                                                            |     |   |    | Total 7 marks                                                                                                                                                                                                                                               |

|               | 1                                                                        | T                                | 1 | 1  |                                                                                                                                                       |
|---------------|--------------------------------------------------------------------------|----------------------------------|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>15</b> (a) | $e^2 = \frac{7g + 5}{11 + 2g}$                                           |                                  | 4 | M1 | for removing square root                                                                                                                              |
|               | 11+2g                                                                    |                                  |   |    |                                                                                                                                                       |
|               | $11e^2 + 2e^2g = 7g + 5$                                                 |                                  |   | M1 | For multiplying by denominator and expanding in a correct equation                                                                                    |
|               | eg $2e^2g - 7g = 5 - 11e^2$ or                                           |                                  |   | M1 | For gathering terms in g on one side and other terms the other side in a correct equation.                                                            |
|               | $11e^2 - 5 = 7g - 2e^2g$ oe                                              |                                  |   |    | other side in a correct equation.                                                                                                                     |
|               | Correct answer scores full marks (unless from obvious incorrect working) | $g = \frac{5 - 11e^2}{2e^2 - 7}$ |   | A1 | or $g = \frac{11e^2 - 5}{7 - 2e^2}$ oe eg $g = \frac{\frac{5}{e^2} - 11}{2 - \frac{7}{e^2}}$ or $g = \left(\frac{5 - 11e^2}{e^2 - 3.5}\right) \div 2$ |
|               |                                                                          |                                  |   |    | etc                                                                                                                                                   |
| (b)           | (3y-8)(y+4)                                                              |                                  | 3 | M1 | For correct factorisation or correct use of quadratic                                                                                                 |
|               |                                                                          |                                  |   |    | formula $\frac{-4 \pm \sqrt{4^2 - 4 \times 3 \times -32}}{2 \times 3}$ or as far as $\frac{-4 \pm \sqrt{400}}{6}$                                     |
|               |                                                                          |                                  |   |    | $\left(y-\frac{8}{3}\right)\left(y+4\right)$ is not valid factorisation, unless preceded                                                              |
|               |                                                                          |                                  |   |    | by division of quadratic by 3, so no marks                                                                                                            |
|               | $y = \frac{8}{3}, y = -4$                                                |                                  |   | A1 | dep on M1 for correct critical values (allow 2.6 or better or 2.7)                                                                                    |
|               | working required                                                         | $y < -4, \ y > \frac{8}{3}$      |   | A1 | oe dep on M1 (allow use of $x$ rather than $y$ )                                                                                                      |
|               |                                                                          |                                  |   |    | or $\left(-\infty, -4\right)$ , $\left(\frac{8}{3}, (+)\infty\right)$ or $\left(-\infty, -4\right) \cup \left(\frac{8}{3}, (+)\infty\right)$ oe       |
|               |                                                                          |                                  |   |    | Total 7 marks                                                                                                                                         |
|               | I .                                                                      | l.                               | 1 | 1  |                                                                                                                                                       |

| <b>16</b> (a) | 8 4 9 7 12 E 2                                               | Fully<br>correct<br>Venn<br>diagram | 3 | B1<br>B2 | For 7 in just knitting  For all 7 others correct (B1 for 4, 5 or 6 others correct)                                                                                                      |
|---------------|--------------------------------------------------------------|-------------------------------------|---|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)           | can either ft their Venn diagram or use values given in text | 17<br>28                            | 2 | B2 ft    | oe 0.61 or 61% or 0.607 or 60.7% or better  (B1ft for 17 as numerator or 28 as denominator in a fraction between 0 and 1)  only ft where regions in Venn diagram have numbers indicated |
| (c)           | can either ft their Venn diagram or use values given in text | 11                                  | 1 | B1ft     | only ft where regions in Venn diagram have numbers indicated                                                                                                                            |
| (d)           | can either ft their Venn diagram or use values given in text | 28                                  | 1 | B1ft     | only ft where regions in Venn diagram have numbers indicated                                                                                                                            |
|               |                                                              |                                     |   |          | Total 7 marks                                                                                                                                                                           |

| 17 | $Q = k\sqrt{d}$ oe or $kQ = \sqrt{d}$ or $Q = \sqrt{kd}$                 |                    | 3 | M1 | $k \neq 1$                                                                          |
|----|--------------------------------------------------------------------------|--------------------|---|----|-------------------------------------------------------------------------------------|
|    | eg $4.5 = k \times \sqrt{324}$ or $k = 0.25$ oe                          |                    |   | M1 | Allow this for M2 if $Q = k\sqrt{d}$ is not seen                                    |
|    |                                                                          |                    |   |    | Condone use of ∞ for method marks                                                   |
|    | Correct answer scores full marks (unless from obvious incorrect working) | $Q = 0.25\sqrt{d}$ |   | Al | oe but must be $Q = \dots$ eg $Q = \frac{\sqrt{d}}{4}$ or $Q = \sqrt{\frac{d}{16}}$ |
|    |                                                                          |                    |   |    | oe                                                                                  |
|    |                                                                          |                    |   |    | Total 3 marks                                                                       |

| 18 | Gradient of $\mathbf{P} = -\frac{2}{5}$ or $y = \frac{7-2x}{5}$ oe or $y = -0.4x + \dots$ or $\frac{5}{2}x$ or $y = \frac{5}{2}x(+\dots)$ |               | 2 | M1 | oe for the given equation rearranged so it is possible to see the gradient or for an equation with gradient of 2.5 oe or $\frac{5}{2}x$ oe |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|---|----|--------------------------------------------------------------------------------------------------------------------------------------------|
|    | Correct answer scores full marks (unless from obvious incorrect working)                                                                  | $\frac{5}{2}$ |   | A1 | oe gradient must be stated but isw if seen and then used in an equation  SCB1 for the equation of a line with gradient                     |
|    |                                                                                                                                           |               |   |    | $\frac{5}{2}$ if $\frac{5}{2}$ not seen separately and no other mark awarded                                                               |
|    |                                                                                                                                           |               |   |    | Total 2 marks                                                                                                                              |

| 19 | 7.5, 8.5, 6.615, 6.625, 1.15, 1.25                                                                                   |       | 3 | B1 | For a correct upper or lower bound Allow 8.49 for 8.5, 6.6249 for 6.5, 1.249 for 1.25                                                                                                                            |
|----|----------------------------------------------------------------------------------------------------------------------|-------|---|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $(G=)\frac{7.5}{2\times6.625-3\times1.15} \left( = \frac{7.5}{13.25-3.45} = \frac{7.5}{9.8} = \frac{75}{98} \right)$ |       |   | M1 | $\frac{LB_c}{2 \times UB_f - 3 \times LB_h}  \text{where } 7.5,, \ LB_c < 8$ $6.62 < UB_f,, \ 6.625, \ 1.15,, \ LB_h < 1.2$ SCB1 for $\frac{7.5}{6.625 - 1.15} (=1.369(8) \text{ [in addition to the first B1]}$ |
|    | working required                                                                                                     | 0.765 |   | A1 | awrt 0.765 dep on completely correct bounds (0.7653061224) dep on M1                                                                                                                                             |
|    |                                                                                                                      |       |   |    | Total 3 marks                                                                                                                                                                                                    |

| 20 | $\frac{5\left(\frac{1}{4y} - y\right)}{\frac{1}{4y} + 2} \left( = \frac{\frac{5}{4y} - 5y}{\frac{1}{4y} + 2} \right) \text{ oe or}$                                                                                       |                        | 3 | M1 | For a correct substitution with only values of <i>y</i> or                                                                                                                                                                                                                                                                                  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $\frac{4y(5x-5y)}{8y+1} \text{ oe}$                                                                                                                                                                                       |                        |   |    | an expression containing $xy$ (not just $x$ ) or a correct denominator of $1 + 8y$                                                                                                                                                                                                                                                          |
|    | $\frac{\frac{5}{4y} \times 4y - 5y \times 4y}{\frac{1}{4y} \times 4y + 2 \times 4y} \text{ or } \frac{\frac{5 - 20y^2}{4y}}{\frac{1 + 8y}{4y}} \text{ oe or }$ $\frac{4y(5x - 5y)}{8y + 1} = \frac{20xy - 20y^2}{8y + 1}$ |                        |   | M1 | multiplying every term by $4y$ or a multiple of $4y$ or writing numerator and denominator over $4y$ or a multiple of $4y$ or correctly expanded with an $xy$ term ( $xy$ could be replaced with $0.25$ oe)  or  3 of $a$ , $b$ , $c$ or $d$ correct if written in the form $\frac{a-by^2}{c+dy}$ where $a$ , $b$ , $c$ and $d$ are integers |
|    | Correct answer scores full marks (unless from obvious incorrect working)                                                                                                                                                  | $\frac{5-20y^2}{1+8y}$ |   | A1 | oe eg $\frac{-5+20y^2}{-1-8y}$ or $\frac{20-80y^2}{4+32y}$                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                           |                        |   |    | Total 3 marks                                                                                                                                                                                                                                                                                                                               |

| $x^{2} - \pi \times (0.5x)^{2}$ $x^{2} - \pi \times (0.5x)^{2}$ $4r^{2} - \pi r^{2} = 80 \text{ oc eg } r^{2} - 0.25\pi r^{2} = 20 \text{ or } x^{2} - 0.25\pi x^{2} = 80 \text{ or } 4x^{2} - \pi x^{2} = 320 \text{ oc}$ $4r^{2} - \pi r^{2} = 80 \text{ oc eg } r^{2} - 0.25\pi r^{2} = 20 \text{ or } x^{2} - 0.25\pi x^{2} = 80 \text{ or } 4x^{2} - \pi x^{2} = 320 \text{ oc}$ $r^{2} = \frac{80}{4 - \pi} (= 93.19) \text{ or } r = \sqrt{\frac{80}{4 - \pi}} (= 9.65)$ $x^{2} = \frac{80}{1 - 0.25\pi} (= 372.78) \text{ or } x = \sqrt{\frac{80}{1 - 0.25\pi}} (19.307) \text{ oc eg}$ $\sqrt{\frac{320}{4 - \pi}}$ $(AC = )\sqrt{(2 \times "9.65")^{2} + (2 \times "9.65")^{2}} \text{ oe or } (AC = )2 \times \sqrt{"9.65"^{2} + 9.65"^{2}}$ $(AC = )\sqrt{"19.307"^{2} + "19.307^{2}} \text{ oe eg } \sqrt{8 \times \frac{80}{4 - \pi}} \text{ oe or } (AC = )\frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45}$ $Correct answer scores full marks (unless from obvious incorrect working)$ parts in one variable only for this mark only, accept without brackets (eg $2r^{2} - \pi r^{2}$ or $x^{2} - \pi \times \frac{1}{2}x^{2}$ ) (any letter can be used eg $AB$ , $x$ , $y$ etc, here, $r = \text{radius}$ , $x = \text{side of square}$ )  M1 A correct expanded (may be seen later in working)  M1 A correct expression for the radius squared or radius or for the side of the square squared or squares o | 21 | (a) <sup>2</sup> 2                                                                                             |      | 5 | M1   | A correct expression for the area of the shaded             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------|------|---|------|-------------------------------------------------------------|
| $x^2 - \pi \times (0.5x)^2$ $x^2 - \pi \times (0.5x)^2$ $x^2 - \pi \times (0.5x)^2$ $4r^2 - \pi r^2 = 80 \text{ oc eg } r^2 - 0.25\pi r^2 = 20 \text{ or } x^2 - 0.25\pi x^2 = 80 \text{ or } 4x^2 - \pi x^2 = 320 \text{ oc}$ $4r^2 - \pi r^2 = 80 \text{ oc eg } r^2 - 0.25\pi r^2 = 20 \text{ or } x^2 - 0.25\pi x^2 = 80 \text{ or } 4x^2 - \pi x^2 = 320 \text{ oc}$ $r^2 = \frac{80}{4 - \pi} (= 93.19) \text{ or } r = \sqrt{\frac{80}{4 - \pi}} (= 9.65)$ $x^2 = \frac{80}{1 - 0.25\pi} (= 372.78) \text{ or } x = \sqrt{\frac{80}{1 - 0.25\pi}} (19.307) \text{ oc eg}$ $\sqrt{\frac{320}{4 - \pi}}$ $(AC = )\sqrt{(2 \times "9.65")^2 + (2 \times "9.65")^2} \text{ oc or } (AC = )2 \times \sqrt "9.65"^2 + 9.65"^2}$ $(AC = )\sqrt{"19.307"^2 + "19.307^2} \text{ oc eg } \sqrt{8 \times \frac{80}{4 - \pi}} \text{ oc or } (AC = )\frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45}$ $Correct \text{ answer scores full marks (unless from obvious incorrect working)}$ For this mark only, accept without brackets (eg $2r^2 - \pi r^2$ or $x^2 - \pi \times \frac{1}{2}x^2$ ) (any letter can be used eg $AB$ , $x$ , $y$ etc, here, $r = \text{radius}$ , $x = \text{side of square}$ )  M1 A correct equation in one variable with brackets expanded (may be seen later in working)  M1 A correct expression for the radius squared or radius or for the side of the square squared or for the side of the square  M1 For a correct calculation to find the length of $AC$ AC = $\sqrt{(2 \times "9.65")^2 + (2 \times "9.65")^2}$ oc or $(AC = )\frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45}$ A1 27.3 – 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41 | $(2r) - \pi r^2$ oe or                                                                                         |      | J | 1711 | •                                                           |
| $\frac{4r^2 - \pi r^2}{4r^2 - \pi r^2} = 80 \text{ oc cg } r^2 - 0.25\pi r^2 = 20 \text{ or } x^2 - 0.25\pi x^2 = 80 \text{ or } 4x^2 - \pi x^2 = 320 \text{ oe}$ $\frac{4r^2 - \pi r^2}{4r^2 - \pi x^2} = 320 \text{ oe}$ $r^2 = \frac{80}{4 - \pi} (= 93.19) \text{ or } r = \sqrt{\frac{80}{4 - \pi}} (= 9.65)$ $x^2 = \frac{80}{1 - 0.25\pi} (= 372.78) \text{ or } x = \sqrt{\frac{80}{1 - 0.25\pi}} (19.307) \text{ oe cg}$ $\sqrt{\frac{320}{4 - \pi}}$ $(AC = )\sqrt{(2 \times "9.65")^2 + (2 \times "9.65")^2} \text{ oe or } (AC = )2 \times \sqrt{"9.65"} + 9.65"^2$ $(AC = )\sqrt{"19.307"^2 + "19.307^2} \text{ oe eg } \sqrt{8 \times \frac{80}{4 - \pi}} \text{ oe or } (AC = )\frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45}$ $Correct answer scores full marks (unless from obvious incorrect working)}$ (cg $2r^2 - \pi r^2$ or $x^2 - \pi \times \frac{1}{2}x^2$ ) (any letter can be used cg $AB$ , $x$ , $y$ etc, here, $r = \text{radius}$ , $x = \text{side of square}$ }  M1 A correct equation in one variable with brackets expanded (may be seen later in working)  M1 A correct expression for the radius squared or for the side of the square squared or                    |    | $x^2 - \pi \times (0.5x)^2$                                                                                    |      |   |      | •                                                           |
| $4r^2 - \pi r^2 = 80 \text{ oe eg } r^2 - 0.25\pi r^2 = 20 \text{ or } x^2 - 0.25\pi x^2 = 80 \text{ or } 4x^2 - \pi x^2 = 320 \text{ oe}$ $r^2 = \frac{80}{4 - \pi} (= 93.19) \text{ or } r = \sqrt{\frac{80}{4 - \pi}} (= 9.65)$ $x^2 = \frac{80}{1 - 0.25\pi} (= 372.78) \text{ or } x = \sqrt{\frac{80}{1 - 0.25\pi}} (19.307) \text{ oe eg}$ $\sqrt{\frac{320}{4 - \pi}}$ $(AC =) \sqrt{(2 \times "9.65")^2 + (2 \times "9.65")^2} \text{ oe or } (AC =) 2 \times \sqrt{"9.65"^2 + 9.65"^2}$ $(AC =) \sqrt{"19.307"^2 + "19.307^2} \text{ oe eg } \sqrt{8 \times \frac{80}{4 - \pi}} \text{ oe or } (AC =) \frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45}$ $Correct \ answer \ scores \ full \ marks \ (unless \ from \ obvious \ incorrect} \ 27.3$ $A1 \ 27.3 - 27.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |                                                                                                                |      |   |      | • •                                                         |
| $4r^2 - \pi r^2 = 80 \text{ oe eg } r^2 - 0.25\pi r^2 = 20 \text{ or } x^2 - 0.25\pi x^2 = 80 \text{ or } 4x^2 - \pi x^2 = 320 \text{ oe}$ $r^2 = \frac{80}{4 - \pi} (= 93.19) \text{ or } r = \sqrt{\frac{80}{4 - \pi}} (= 9.65)$ $x^2 = \frac{80}{1 - 0.25\pi} (= 372.78) \text{ or } x = \sqrt{\frac{80}{1 - 0.25\pi}} (19.307) \text{ oe eg}$ $\sqrt{\frac{320}{4 - \pi}}$ $(AC =) \sqrt{(2 \times "9.65")^2 + (2 \times "9.65")^2}$ $(AC =) \sqrt{"19.307"^2 + "19.307"^2} \text{ oe eg } \sqrt{8 \times \frac{80}{4 - \pi}} \text{ oe or}$ $(AC =) \frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45}$ $Correct answer scores full marks (unless from obvious incorrect working)}$ $A1                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                                                                                |      |   |      | (eg $2r^2 - \pi r^2$ or $x^2 - \pi \times \frac{1}{2}x^2$ ) |
| $4r^2 - \pi r^2 = 80 \text{ oe eg } r^2 - 0.25\pi r^2 = 20 \text{ or } x^2 - 0.25\pi x^2 = 80 \text{ or } 4x^2 - \pi x^2 = 320 \text{ oe}$ $r^2 = \frac{80}{4 - \pi} (= 93.19) \text{ or } r = \sqrt{\frac{80}{4 - \pi}} (= 9.65)$ $x^2 = \frac{80}{1 - 0.25\pi} (= 372.78) \text{ or } x = \sqrt{\frac{80}{1 - 0.25\pi}} (19.307) \text{ oe eg}$ $\sqrt{\frac{320}{4 - \pi}}$ $(AC =) \sqrt{(2 \times "9.65")^2 + (2 \times "9.65")^2}$ $(AC =) \sqrt{"19.307"^2 + "19.307"^2} \text{ oe eg } \sqrt{8 \times \frac{80}{4 - \pi}} \text{ oe or}$ $(AC =) \frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45}$ $Correct answer scores full marks (unless from obvious incorrect working)}$ $A1                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                                                                                |      |   |      | (any letter can be used eg $AB$ , $x$ , $y$ etc,            |
| $4x^2 - \pi x^2 = 320 \text{ oe}$ $r^2 = \frac{80}{4 - \pi} (= 93.19) \text{ or } r = \sqrt{\frac{80}{4 - \pi}} (= 9.65)$ $x^2 = \frac{80}{1 - 0.25\pi} (= 372.78) \text{ or } x = \sqrt{\frac{80}{1 - 0.25\pi}} (19.307) \text{ oe eg}$ $\sqrt{\frac{320}{4 - \pi}}$ $(AC =)\sqrt{(2 \times "9.65")^2 + (2 \times "9.65")^2} \text{ oe or}$ $(AC =) 2 \times \sqrt "9.65"^2 + 9.65"^2}$ $(AC =) \sqrt{"19.307"^2 + "19.307"^2} \text{ oe eg} \sqrt{8 \times \frac{80}{4 - \pi}} \text{ oe or}$ $(AC =) \frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45}$ $Correct answer scores full marks (unless from obvious incorrect working)$ $A1 = 27.3 - 27.5$ $A1 = 27.3 - 27.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                                                                                                                |      |   |      | · •                                                         |
| $4x^2 - \pi x^2 = 320 \text{ oe}$ $r^2 = \frac{80}{4 - \pi} (= 93.19) \text{ or } r = \sqrt{\frac{80}{4 - \pi}} (= 9.65)$ $x^2 = \frac{80}{1 - 0.25\pi} (= 372.78) \text{ or } x = \sqrt{\frac{80}{1 - 0.25\pi}} (19.307) \text{ oe eg}$ $\sqrt{\frac{320}{4 - \pi}}$ $(AC =)\sqrt{(2 \times "9.65")^2 + (2 \times "9.65")^2} \text{ oe or}$ $(AC =) 2 \times \sqrt "9.65"^2 + 9.65"^2}$ $(AC =) \sqrt{"19.307"^2 + "19.307"^2} \text{ oe eg} \sqrt{8 \times \frac{80}{4 - \pi}} \text{ oe or}$ $(AC =) \frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45}$ $Correct answer scores full marks (unless from obvious incorrect working)$ $A1 = 27.3 - 27.5$ $A1 = 27.3 - 27.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | $4r^2 - \pi r^2 = 80$ oe eg $r^2 - 0.25\pi r^2 = 20$ or $x^2 - 0.25\pi x^2 = 80$ or                            |      |   | M1   | A correct equation in one variable with                     |
| $r^2 = \frac{80}{4 - \pi}  (= 93.19) \text{ or } r = \sqrt{\frac{80}{4 - \pi}}  (= 9.65)$ $x^2 = \frac{80}{1 - 0.25\pi}  (= 372.78) \text{ or } x = \sqrt{\frac{80}{1 - 0.25\pi}}  (19.307) \text{ oe eg}$ $\sqrt{\frac{320}{4 - \pi}}$ $(AC =) \sqrt{(2 \times "9.65")^2 + (2 \times "9.65")^2} \text{ oe or}$ $(AC =) 2 \times \sqrt{"9.65"^2 + 9.65"^2}$ $(AC =) \sqrt{"19.307"^2 + "19.307"^2} \text{ oe eg} \sqrt{8 \times \frac{80}{4 - \pi}} \text{ oe or}$ $(AC =) \frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45}$ $Correct \ answer \ scores \ full \ marks \ (unless \ from \ obvious \ incorrect}$ $27.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | <u> </u>                                                                                                       |      |   |      | <u> </u>                                                    |
| $r^{2} = \frac{80}{4 - \pi} (= 93.19) \text{ or } r = \sqrt{\frac{60}{4 - \pi}} (= 9.65)$ $x^{2} = \frac{80}{1 - 0.25\pi} (= 372.78) \text{ or } x = \sqrt{\frac{80}{1 - 0.25\pi}} (19.307) \text{ oe eg}$ $\sqrt{\frac{320}{4 - \pi}}$ $(AC =)\sqrt{(2 \times "9.65")^{2} + (2 \times "9.65")^{2}} \text{ oe or}$ $(AC =) 2 \times \sqrt{"9.65"^{2} + 9.65"^{2}}$ $(AC =)\sqrt{"19.307"^{2} + "19.307^{2}} \text{ oe eg} \sqrt{8 \times \frac{80}{4 - \pi}} \text{ oe or}$ $(AC =) \frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45}$ $Correct \ answer \ scores \ full \ marks \ (unless \ from \ obvious \ incorrect \ working)}$ $A1 \ 27.3 - 27.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                                                                                                                |      |   |      | · · · · · · · · · · · · · · · · · · ·                       |
| $ \sqrt{\frac{320}{4-\pi}} $ $ (AC =)\sqrt{(2 \times "9.65")^2 + (2 \times "9.65")^2} \text{ oe or} $ $ (AC =) 2 \times \sqrt{"9.65"^2 + 9.65"^2} $ $ (AC =) \sqrt{"19.307"^2 + "19.307"^2} \text{ oe eg } \sqrt{8 \times \frac{80}{4-\pi}} \text{ oe or} $ $ (AC =) \frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45} $ $ Correct answer scores full marks (unless from obvious incorrect working)} $ A1 27.3 – 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | $r^2 = \frac{80}{4-\pi} \ (=93.19) \text{ or } r = \sqrt{\frac{80}{4-\pi}} \ (=9.65)$                          |      |   | M1   | radius or for the side of the square squared or             |
| $(AC =)\sqrt{(2 \times "9.65")^2 + (2 \times "9.65")^2} \text{ oe or}$ $(AC =)\sqrt{(9.65")^2 + (9.65")^2}$ $(AC =)\sqrt{"19.307"^2 + "19.307"^2} \text{ oe eg } \sqrt{8 \times \frac{80}{4 - \pi}} \text{ oe or}$ $(AC =)\frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45}$ $Correct \ answer \ scores \ full \ marks \ (unless \ from \ obvious \ incorrect}$ $vorking)$ $M1  For a correct calculation to find the length of a correct calculation to find the correct calculat$                                                                                                                                          |    | $x^2 = \frac{80}{1 - 0.25\pi} (= 372.78) \text{ or } x = \sqrt{\frac{80}{1 - 0.25\pi}} (19.307) \text{ oe eg}$ |      |   |      | •                                                           |
| $(AC =)\sqrt{(2 \times "9.65")^2 + (2 \times "9.65")^2} \text{ oe or}$ $(AC =)\sqrt{(9.65")^2 + (9.65")^2}$ $(AC =)\sqrt{"19.307"^2 + "19.307"^2} \text{ oe eg } \sqrt{8 \times \frac{80}{4 - \pi}} \text{ oe or}$ $(AC =)\frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45}$ $Correct \ answer \ scores \ full \ marks \ (unless \ from \ obvious \ incorrect}$ $vorking)$ $M1  For a correct calculation to find the length of a correct calculation to find the correct calculat$                                                                                                                                          |    | 320                                                                                                            |      |   |      |                                                             |
| $(AC =) \sqrt{(2 \times 5.05)^{3} + (2 \times 5.05)^{3}} $ $(AC =) 2 \times \sqrt{(9.65)^{2} + 9.65^{2}}$ $(AC =) \sqrt{(19.307)^{2} + (19.307)^{2}} = 0 \text{ or } 0 \text{ or } 0$ $(AC =) \frac{2 \times (9.65)^{2}}{\sin 45} = 0 \text{ or } \frac{2 \times (9.65)^{2}}{\cos 45}$ $Correct \text{ answer scores full marks (unless from obvious incorrect working)}$ $AC$ $AC$ $AC$ $AC$ $AC$ $AC$ $AC$ $AC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | $\sqrt{4-\pi}$                                                                                                 |      |   |      |                                                             |
| $(AC =) 2 \times \sqrt{"9.65"^2 + 9.65"^2}$<br>$(AC =) \sqrt{"19.307"^2 + "19.307"^2}$ oe eg $\sqrt{8 \times \frac{80}{4 - \pi}}$ oe or $(AC =) \frac{2 \times "9.65"}{\sin 45}$ or $\frac{2 \times "9.65"}{\cos 45}$<br>Correct answer scores full marks (unless from obvious incorrect working)  A1 27.3 – 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | $(AC =)\sqrt{(2 \times "9.65")^2 + (2 \times "9.65")^2}$ oe or                                                 |      |   | M1   | <del>-</del>                                                |
| $(AC =) \frac{2 \times "9.65"}{\sin 45} \text{ or } \frac{2 \times "9.65"}{\cos 45}$ $Correct \text{ answer scores full marks (unless from obvious incorrect working)}$ $A1  27.3 - 27.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | $(AC =) 2 \times \sqrt{"9.65"^2 + 9.65"^2}$                                                                    |      |   |      | AC                                                          |
| Correct answer scores full marks (unless from obvious incorrect working)  A1 27.3 – 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | $(AC =)\sqrt{19.307''^2 + 19.307''^2}$ oe eg $\sqrt{8 \times \frac{80}{4 - \pi}}$ oe or                        |      |   |      |                                                             |
| working)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | $(AC =)$ $\frac{2 \times "9.65"}{\sin 45}$ or $\frac{2 \times "9.65"}{\cos 45}$                                |      |   |      |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | · · · · · · · · · · · · · · · · · · ·                                                                          | 27.3 |   | A1   | 27.3 – 27.5                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                |      |   |      | Total 5 marks                                               |

| 22 | eg $2(5-y)^2 + 3y^2 = 210$<br>$\sqrt{\frac{210-3y^2}{2}} = 5-y$ oe                           | Eg $2x^2 + 3(5-x)^2 = 210$<br>$\sqrt{\frac{210-2x^2}{3}} = 5-x$ oe |                    | 5 | M1 substitution of $x = \pm 5 \pm y$ or $y = \pm 5 \pm x$ into $2x^2 + 3y^2 = 210$ or a correct equation formed by using $x = \pm 5 \pm y$ or $y = \pm 5 \pm x$ to obtain an equation in $x$ only or $y$ only                                                    |
|----|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | eg $5y^2 - 20y - 160 (= 0)$<br>or<br>$y^2 - 4y - 32 (= 0)$                                   | eg $5x^2 - 30x - 135 (= 0)$<br>or<br>$x^2 - 6x - 27 (= 0)$         |                    |   | M1 dep on previous M1 for multiplying out and collecting terms, forming a three term quadratic in any form of $ax^2 + bx + c$ (= 0) where <b>at least 2</b> coefficients ( $a$ or $b$ or $c$ ) are correct                                                       |
|    | eg $(y-8)(y+4) (=0)$ $y = \frac{4 \pm \sqrt{(-4)^2 - 4 \times 1 \times -32}}{2 \times 1}$ eg | eg                                                                 |                    |   | M1 (dep on first M1) for a complete method to solve their 3-term quadratic equation $(ax^2 + bx + c)$ = 0); correct factorisation or substitution into formula (allow one sign error and some simplification – allow as far as $\frac{4 \pm \sqrt{16 + 128}}{2}$ |
|    | $(y-2)^2 - 2^2 = -32$ (allow incorrect labels for $x/y$ )                                    | $(x-3)^2 - 3^2 - 27 = 0$ (allow incorrect labels for $x/y$ )       |                    |   | or $\frac{6 \pm \sqrt{36 + 108}}{2}$ ) or completing the square or for seeing $x = 9$ , $x = -3$ or $y = 8$ , $y = -4$                                                                                                                                           |
|    | eg $x + 8 = 5$ and $x + -4 = 5$<br>(correct labels for $x/y$ )                               | eg $y = 5 - 9$ and $y = 5 - 3$<br>(correct labels for $x/y$ )      |                    |   | M1ft dep on previous M1 for substituting <b>their</b> 2 found values of x or y in a suitable equation (allow use of quadratic equation) <b>or</b> fully correct values for the other variable must see substitution for incorrect x/y values                     |
|    | working required                                                                             |                                                                    | (9, -4)<br>(-3, 8) |   | A1 (dep on M2)                                                                                                                                                                                                                                                   |
|    |                                                                                              |                                                                    |                    |   | Total 5 marks                                                                                                                                                                                                                                                    |

| 22 | T. A. 6                                                                                                           |                           | 1 2 | 3.61  | -4m+15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----|-------------------------------------------------------------------------------------------------------------------|---------------------------|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23 | For 2 of                                                                                                          |                           | 3   | M1    | or $5^{4x+15}$ as the numerator or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | $30=5\times6$ or $30=5\times2\times3$ oe (for numerator)                                                          |                           |     |       | $5^{2x+5}$ as the denominator or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | or                                                                                                                |                           |     |       | $30 = 5 \times 6 \text{ or } 30 = 5 \times 2 \times 3 \text{ oe or}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | $\sqrt{180} = 6\sqrt{5}$ oe or $\sqrt{180} = 2 \times 3 \times \sqrt{5}$ (for denominator)                        |                           |     |       | 100 (5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | $\sqrt{180} = 0\sqrt{3}$ of or $\sqrt{180} = 2 \times 3 \times \sqrt{3}$ (for denominator)                        |                           |     |       | $\sqrt{180} = 6\sqrt{5}$ oe or $\sqrt{180} = 2 \times 3 \times \sqrt{5}$ or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | or                                                                                                                |                           |     |       | $25^{2x+7} = (5^2)^{2x+7}$ or $5^{2(2x+7)}$ oe or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | $25^{2x+7} = (5^2)^{2x+7}$ or $5^{2(2x+7)}$ oe                                                                    |                           |     |       | 23 = (3)  or  3  oe  or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                   |                           |     |       | $\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{4x+9}{4x+9} = \frac{1}{4} \cdot \frac{1}{4x+9} \cdot \frac{1}{4x+9} = \frac{1}{4x+9$ |
|    | or                                                                                                                |                           |     |       | $\left(\sqrt{5}\right)^{4x+9} = \left(5^{\frac{1}{2}}\right)^{4x+9}$ or $5^{\frac{1}{2}(4x+9)}$ oe or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | $\left( -\frac{4x+9}{1} \right)^{4x+9} = \frac{1}{-(4x+9)}$                                                       |                           |     |       | (**)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | $\left(\sqrt{5}\right)^{4x+9} = \left(5^{\frac{1}{2}}\right)^{4x+9} \text{ or } 5^{\frac{1}{2}(4x+9)} \text{ oe}$ |                           |     |       | ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                                   |                           |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | or                                                                                                                |                           |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | 30 –                                                                                                              |                           |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | $\frac{30}{\sqrt{180}} = \sqrt{5}$ oe                                                                             |                           |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | $\sqrt{180}$                                                                                                      |                           |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | or $5^{4x+15}$ as the numerator                                                                                   |                           |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | or $5^{2x+5}$ as the denominator                                                                                  |                           |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | $6 \times 5 \times 5^{4x+14}$ $5^{4x+15}$                                                                         |                           |     | M1    | Correct expression in terms of 6 (or 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | $\frac{0 \times 3 \times 3}{0 \times 10^{-3}}$ or $\frac{3}{0 \times 10^{-3}}$ or                                 |                           |     | 1.11  | and 3) and 5 with indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | $\frac{6 \times 5^{0.5} \times 5^{2x+4.5}}{6 \times 5^{0.5} \times 5^{2x+4.5}}$ oe eg $\frac{5}{5^{2x+5}}$ or     |                           |     |       | Some cancellation could have taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | $\sqrt{5}^{8x+30}$                                                                                                |                           |     |       | place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | $\frac{\sqrt{3}}{\sqrt{3}}$ of or $\frac{23}{\sqrt{3}}$ of                                                        |                           |     |       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | $\frac{\sqrt{5}^{8x+30}}{\sqrt{5}^{4x+10}}$ oe or $\frac{25^{2x+7.5}}{25^{x+2.5}}$ oe                             |                           |     |       | or fully correct with $\sqrt{5}$ and powers or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |                                                                                                                   |                           |     |       | 25 and powers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | working required                                                                                                  | <b>5</b> <sup>2x+10</sup> |     | A1    | dep on M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | working required                                                                                                  | 3                         |     | 7 1 1 | allow $w = 2x + 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                                   |                           |     |       | anow $W = 2\lambda + 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                                                                                                                   |                           |     |       | T-4-12 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                                                                                                                   |                           |     |       | Total 3 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| <b>24</b> (a) | $eg \overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OB} + \overrightarrow{BC} \text{ or }$                                                                                   |                                                                                                                                        |                                                   | 2 | M1         |                                                         |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---|------------|---------------------------------------------------------|
|               | eg -4a +3b +2a + b                                                                                                                                                                       |                                                                                                                                        |                                                   |   |            |                                                         |
|               | Correct answer scores full marks (unless from obvious incorrect                                                                                                                          |                                                                                                                                        | $4\mathbf{b} - 2\mathbf{a}$                       |   | A1         | oe but must be simplified                               |
|               | working)                                                                                                                                                                                 |                                                                                                                                        |                                                   |   |            | eg - 2a + 4b, 2(2b - a)                                 |
| (b)           | eg $\overrightarrow{OP} = 4\mathbf{a} + \frac{3}{5}$ " $(4\mathbf{b} - 2\mathbf{a})$ " $(=\frac{14}{5}\mathbf{a} + \frac{12}{5}\mathbf{b} \text{ or } 2.8\mathbf{a} + 2.4\mathbf{b})$ oe |                                                                                                                                        |                                                   | 4 | M1ft       | ` 1                                                     |
|               | 5 5 or                                                                                                                                                                                   | 5                                                                                                                                      |                                                   |   |            | another vector equation) ft their $\overrightarrow{AC}$ |
|               |                                                                                                                                                                                          |                                                                                                                                        |                                                   |   | it then AC |                                                         |
|               | eg $\overrightarrow{OP} = 3\mathbf{b} + 2\mathbf{a} + \mathbf{b} - \frac{2}{5}$ " $(4\mathbf{b} - 2\mathbf{a})$                                                                          |                                                                                                                                        |                                                   |   |            |                                                         |
|               | eg $\overrightarrow{OQ} = \lambda''(\frac{14}{5}\mathbf{a} + \frac{12}{5}\mathbf{b})''$                                                                                                  | $\overrightarrow{egPQ} = k(2.8\mathbf{a} + 2.4\mathbf{b})$                                                                             |                                                   |   | M1ft       | ft their $\overline{AC}$                                |
|               | $\left(\frac{\text{eg}}{5}\right) \frac{\partial \mathcal{Q}}{\partial x} \left(\frac{\partial \mathbf{a}}{\partial y} + \frac{\partial \mathbf{b}}{\partial y}\right)$                  | or                                                                                                                                     |                                                   |   |            | (This mark can be awarded                               |
|               | or                                                                                                                                                                                       | $\operatorname{eg} \overrightarrow{PQ} = \frac{2}{5} (4\mathbf{b} - 2\mathbf{a}) + m(2\mathbf{a} + \mathbf{b})$                        |                                                   |   |            | without the previous mark awarded)                      |
|               | $eg  \overrightarrow{OQ} = 3\mathbf{b} + \mu(2\mathbf{a} + \mathbf{b})$                                                                                                                  | $\operatorname{cg}_{1} \mathcal{Q} = {}_{5}(\operatorname{Ho}_{2} \mathcal{Q}) + \operatorname{Ho}_{2}(\mathcal{Q}_{1} + \mathcal{Q})$ |                                                   |   |            | awarded)                                                |
|               | or                                                                                                                                                                                       |                                                                                                                                        |                                                   |   |            | a correct expression for $\overrightarrow{OQ}$ or       |
|               | $eg  \overrightarrow{OQ} = 4\mathbf{b} + 2\mathbf{a} + \omega(2\mathbf{a} + \mathbf{b})$                                                                                                 |                                                                                                                                        |                                                   |   |            |                                                         |
|               | eg eg 18 1 24 1 8 (24 1 8)                                                                                                                                                               |                                                                                                                                        |                                                   |   |            | PQ oe                                                   |
|               | eg $\overrightarrow{OQ} = \lambda''(\frac{14}{5}\mathbf{a} + \frac{12}{5}\mathbf{b})''$                                                                                                  | $\operatorname{eg} \overrightarrow{PQ} = k(2.8\mathbf{a} + 2.4\mathbf{b})$                                                             |                                                   |   | M1ft       | ft their $\overrightarrow{AC}$                          |
|               | 5 5 5                                                                                                                                                                                    | and                                                                                                                                    |                                                   |   |            | 2 correct expressions for $OQ$ or                       |
|               | and                                                                                                                                                                                      | eg $\overrightarrow{PQ} = \frac{2}{5} (4\mathbf{b} - 2\mathbf{a}) + m(2\mathbf{a} + \mathbf{b})$                                       |                                                   |   |            | $\overrightarrow{PQ}$ oe                                |
|               | eg $\overrightarrow{OQ} = 3\mathbf{b} + \mu(2\mathbf{a} + \mathbf{b})$ or                                                                                                                |                                                                                                                                        |                                                   |   |            | ft dep on previous M1                                   |
|               | $4\mathbf{b} + 2\mathbf{a} + \omega(2\mathbf{a} + \mathbf{b})$                                                                                                                           |                                                                                                                                        |                                                   |   |            |                                                         |
|               | working required                                                                                                                                                                         |                                                                                                                                        |                                                   |   | A1         | oe dep on M2                                            |
|               |                                                                                                                                                                                          |                                                                                                                                        | $\frac{42}{5}\mathbf{a} + \frac{36}{5}\mathbf{b}$ |   |            | $8.4\mathbf{a} + 7.2\mathbf{b}$                         |
|               |                                                                                                                                                                                          |                                                                                                                                        |                                                   |   |            | Total 6 marks                                           |

| 25 (i) | (30, 2)  | 1 | B1 cao       |
|--------|----------|---|--------------|
| (ii)   | (300, 0) | 1 | B1 cao       |
|        |          |   | Total 2 marl |